Anchored Semi-Unification

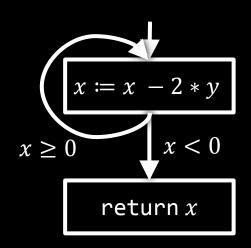
Tobias Tebbi Final Talk – Master Thesis

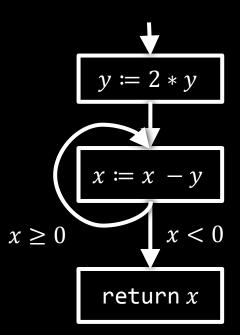
Overview

- Motivation: Translation Validation
- Nonnested Recursion Schemes
- Anchored Semi-Unification

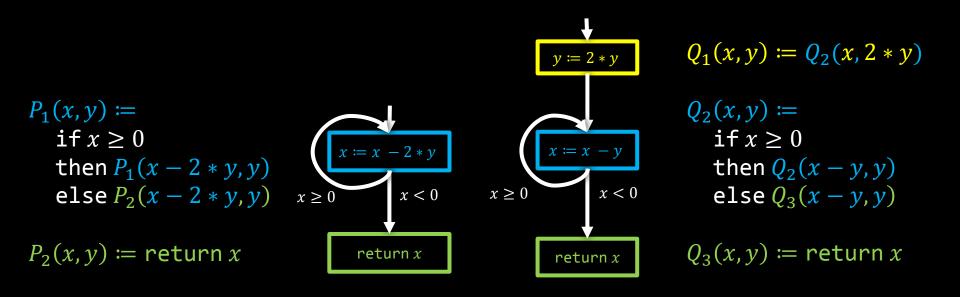
Motivation: Translation Validation

 Check semantic equivalence of input and output of an optimization phase.



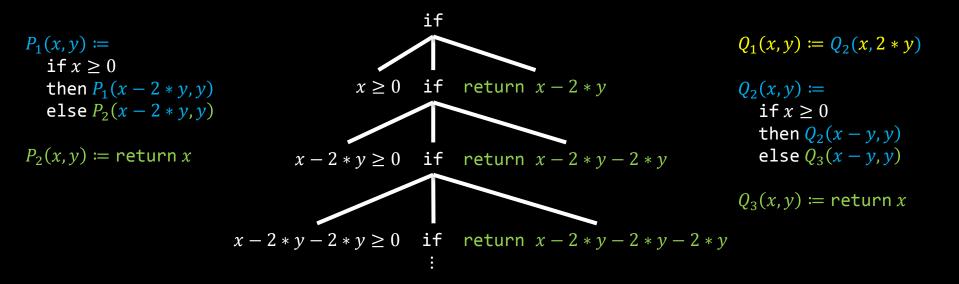


• Encode the CFGs as recursion schemes



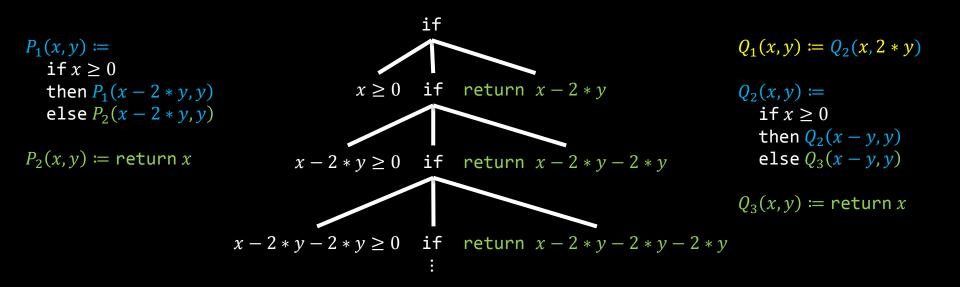
• We can unfold the definitions of the procedures.

 $\begin{array}{c}P_1(x,y)\\ \text{if } x \geq 0 \text{ then } P_1(x-2*y,y) \text{ else } P_2(x-2*y,y)\\ \text{if } x \geq 0 \text{ then } P_1(x-2*y,y) \text{ else } \text{ return } x-2*y\\ \text{if } x \geq 0 \text{ then } P_1(x-2*y-2*y,y) \text{ else } \text{ return } x-2*y\\ \text{if } x \geq 0 \text{ then } P_1(x-2*y-2*y,y) \text{ else } \text{ return } x-2*y-2*y \text{ else } \text{ return } x-2*y \end{array}$

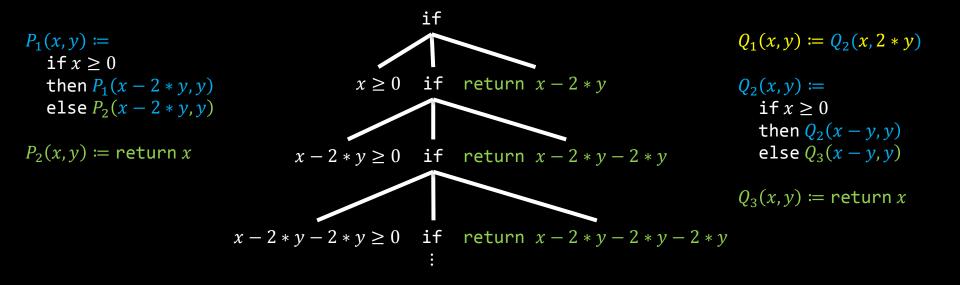


• Q_1 results in the same infinite tree.

 $\begin{array}{c} Q_{1}(x,y) \\ Q_{2}(x,2*y) \\ \text{if } x \geq 0 \text{ then } Q_{2}(x-2*y,2*y) \text{ else } Q_{3}(x-2*y,2*y) \\ \text{if } x \geq 0 \text{ then } Q_{2}(x-2*y,2*y) \text{ else } \text{ return } x-2*y \\ \text{if } x \geq 0 \text{ then } Q_{2}(x-2*y,2*y) \text{ else } \text{ return } x-2*y - 2*y \text{ else } \text{ return } x-2*y \\ \text{if } x \geq 0 \text{ then } \text{if } x-2*y \geq 0 \text{ then } Q_{2}(x-2*y-2*y,2*y) \text{ else } \text{ return } x-2*y - 2*y \text{ else } \text{ return } x-2*y \\ \text{if } x \geq 0 \text{ then } \text{if } x-2*y \geq 0 \text{ then } P_{1}(x-2*y-2*y,y) \text{ else } \text{ return } x-2*y - 2*y \text{ else } \text{ return } x-2*y \\ \end{array}$



- Q_1 results in the same infinite tree.
- If the schemes produce the same tree, then the initial CFGs are equivalent.



Unification Modulo Nonnested Recursion Schemes

- Restriction to nonnested schemes: P(Q(...))
- Unification: Find substitution of variables such that $P(s_1, ..., s_n) \equiv Q(t_1, ..., t_m)$
- Tree equivalence problem was known to be decidable [Sabelfeld00,Courcelle78]
- We reduce the unification problem to anchored semi-unification

Semi-Unification

- Semi-unification is undecidable
- We reduce to a new decidable fragment: anchored semi-unification
- We skip the reduction for this talk

Ordinary Unification

- Terms: $s, t ::= x \mid a \mid s \cdot t$
- Substitutions σ, τ substitute variables by terms
- Given $s \doteq t$, find a substitution σ such that $\sigma s = \sigma t$.
- We call σ a unifier of $s \doteq t$
- Example $x \cdot a \doteq b \cdot y$ Unifier $\sigma = \{x \mapsto b, y \mapsto a\}$

Semi-Unification

- Terms: $s, t ::= x | a | s \cdot t | \alpha x$
- An instance variable αx is a variant of x
- This must be respected by substitutions: $\sigma(\alpha x) = \sigma(\hat{\alpha}(\sigma x))$ where $\hat{\alpha}s$ is s with every variable y being replaced by αy
- Example:

 $\sigma \coloneqq \{x \mapsto a \cdot y, \alpha x \mapsto a \cdot z, \alpha y = z\} \text{ is ok}$ $\sigma \coloneqq \{x \mapsto a \cdot y, \alpha x \mapsto y\} \text{ is forbidden}$

We search for a solution σ

• $\alpha x \doteq a \cdot y$, $\alpha z \doteq a \cdot (a \cdot x)$, $\alpha y \doteq a \cdot x$, $\alpha x \doteq z$

 $\alpha x \Longrightarrow z$ since $\sigma(\alpha x) = \sigma z$

- $\alpha x \doteq a \cdot y$, $\alpha z \doteq a \cdot (a \cdot x)$, $\alpha y \doteq a \cdot x$, $\alpha x \doteq z$
- $z \doteq a \cdot y$, $\alpha z \doteq a \cdot (a \cdot x)$, $\alpha y \doteq a \cdot x$, $\alpha x \doteq z$

 $z \Longrightarrow a \cdot y \text{ since } \sigma z = \sigma(a \cdot y)$ $\alpha z \Longrightarrow \hat{\alpha}(a \cdot y) \text{ since } \sigma(\alpha z) = \sigma(\hat{\alpha}(\sigma z))$

- $\alpha x \doteq a \cdot y$, $\alpha z \doteq a \cdot (a \cdot x)$, $\alpha y \doteq a \cdot x$, $\alpha x \doteq z$
- $z \doteq a \cdot y$, $\alpha z \doteq a \cdot (a \cdot x)$, $\alpha y \doteq a \cdot x$, $\alpha x \doteq z$
- $z \doteq a \cdot y, \ \hat{\alpha}(a \cdot y) \doteq a \cdot (a \cdot x), \ \alpha y \doteq a \cdot x, \ \alpha x \doteq a \cdot y$

By definition of $\hat{\alpha}$

- $\alpha x \doteq a \cdot y$, $\alpha z \doteq a \cdot (a \cdot x)$, $\alpha y \doteq a \cdot x$, $\alpha x \doteq z$
- $z \doteq a \cdot y$, $\alpha z \doteq a \cdot (a \cdot x)$, $\alpha y \doteq a \cdot x$, $\alpha x \doteq z$
- $z \doteq a \cdot y, \ \widehat{\alpha}(a \cdot y) \doteq a \cdot (a \cdot x), \ \alpha y \doteq a \cdot x, \ \alpha x \doteq a \cdot y$
- $z \doteq a \cdot y$, $a \cdot \alpha y \doteq a \cdot (a \cdot x)$, $\alpha y \doteq a \cdot x$, $\alpha x \doteq a \cdot y$

Splitting the equation

- $\alpha x \doteq a \cdot y$, $\alpha z \doteq a \cdot (a \cdot x)$, $\alpha y \doteq a \cdot x$, $\alpha x \doteq z$
- $z \doteq a \cdot y$, $\alpha z \doteq a \cdot (a \cdot x)$, $\alpha y \doteq a \cdot x$, $\alpha x \doteq z$
- $z \doteq a \cdot y, \ \hat{\alpha}(a \cdot y) \doteq a \cdot (a \cdot x), \ \alpha y \doteq a \cdot x, \ \alpha x \doteq a \cdot y$
- $z \doteq a \cdot y$, $a \cdot \alpha y \doteq a \cdot (a \cdot x)$, $\alpha y \doteq a \cdot x$, $\alpha x \doteq a \cdot y$
- $z \doteq a \cdot y$, $a \doteq a$, $\alpha y \doteq a \cdot x$, $\alpha y \doteq a \cdot x$, $\alpha x \doteq a \cdot y$

Removing trivial equations

- $\alpha x \doteq a \cdot y$, $\alpha z \doteq a \cdot (a \cdot x)$, $\alpha y \doteq a \cdot x$, $\alpha x \doteq z$
- $z \doteq a \cdot y$, $\alpha z \doteq a \cdot (a \cdot x)$, $\alpha y \doteq a \cdot x$, $\alpha x \doteq z$
- $z \doteq a \cdot y, \ \hat{\alpha}(a \cdot y) \doteq a \cdot (a \cdot x), \ \alpha y \doteq a \cdot x, \ \alpha x \doteq a \cdot y$
- $z \doteq a \cdot y$, $a \cdot \alpha y \doteq a \cdot (a \cdot x)$, $\alpha y \doteq a \cdot x$, $\alpha x \doteq a \cdot y$
- $z \doteq a \cdot y$, $a \doteq a$, $\alpha y \doteq a \cdot x$, $\alpha y \doteq a \cdot x$, $\alpha x \doteq a \cdot y$
- $z \doteq a \cdot y$, $\alpha y \doteq a \cdot x$, $\alpha x \doteq a \cdot y$

Now we can construct a solution

• $\alpha x \doteq a \cdot y$, $\alpha z \doteq a \cdot (a \cdot x)$, $\alpha y \doteq a \cdot x$, $\alpha x \doteq z$ • $z \doteq a \cdot y$, $\alpha z \doteq a \cdot (a \cdot x)$, $\alpha y \doteq a \cdot x$, $\alpha x \doteq z$ • $z \doteq a \cdot y$, $\hat{\alpha}(a \cdot y) \doteq a \cdot (a \cdot x)$, $\alpha y \doteq a \cdot x$, $\alpha x \doteq a \cdot y$ • $z \doteq a \cdot y$, $a \cdot \alpha y \doteq a \cdot (a \cdot x)$, $\alpha y \doteq a \cdot x$, $\alpha x \doteq a \cdot y$ • $z \doteq a \cdot y$, $a \doteq a$, $\alpha y \doteq a \cdot x$, $\alpha y \doteq a \cdot x$, $\alpha x \doteq a \cdot y$ • $z \doteq a \cdot y$, $a \doteq a$, $\alpha y \doteq a \cdot x$, $\alpha y \doteq a \cdot x$, $\alpha x \doteq a \cdot y$ • $z \doteq a \cdot y$, $a \doteq a, \alpha y \doteq a \cdot x, \alpha y \doteq a \cdot x$, $\alpha x \doteq a \cdot y$

 $\overline{\sigma} \coloneqq \{ \overline{z} \mapsto \overline{a \cdot y}, \overline{\alpha y} \mapsto \overline{a \cdot x}, \overline{\alpha x} \mapsto \overline{a \cdot y}, \\ \alpha z \mapsto \overline{a \cdot (a \cdot x)} \}$

Semi-Unification Rules

- *E*, $\alpha x \doteq s \implies E[s / \alpha x]$, $\alpha x \doteq s$ if *s* instance-free
- $E, x \doteq s \implies E[s/x], x \doteq s$ if *s* instance-free
- $E, s_1 \cdot s_2 \doteq t_1 \cdot t_2 \implies E, s_1 \doteq t_1, s_2 \doteq t_2$
- $E, s \doteq s \implies E$

Semi-Unification Rules

- But semi-unification is undecidable!
- The rules always terminate but ...
- ... they can get stuck.
- Example:

 $\alpha x \doteq a, x \doteq \alpha y$

Substituting x would produce $\alpha(\alpha y)$. We forbid this to ensure termination.

Anchored Semi-

E,
$$\alpha x \doteq s \implies E[s/\alpha x]$$
, $\alpha x \doteq s$ if *s* instance-free

•
$$E, x \doteq s \implies E[s/x], x \doteq s$$

if s instance-free

•
$$E, s_1 \cdot s_2 \doteq t_1 \cdot t_2 \implies E, s_1 \doteq t_1, s_2 \doteq t_2$$

• $E, s \doteq s \implies E$

- Anchoredness: Invariant to ensure progress
- Intuition: Whenever we see an instance variable, we can replace it by an instance-free term.
- Definition: There is a partial equivalence relation ~ on variables such that

- If $\alpha x \in (\sim)$, then $\alpha x \doteq s$ with *s* instance-free

 $-\operatorname{lf} s[x] \doteq t[y]$, then $x \sim y$

 $-\operatorname{lf} s[\alpha x] \doteq t[\beta y]$, then $\alpha x \sim \beta y$

 $- \text{ If } x \sim y \text{ and } \alpha x \in (\sim), \text{ then } \alpha x \sim \alpha y$

Complexity

- The rules I presented need exponential time
- There is an algorithm with time $O(n^3 \alpha(n))$
- Idea from Unification-Closure [Huet78]: Don't perform substitutions but just record equivalences in a union-find structure.

References

- **B. Courcelle**. A representation of trees by languages II. Theoretical Computer Science, 7(1):25-55, 1978.
- V. Sabelfeld. The tree equivalence of linear recursion schemes. Theoretical Computer Science, 238(1-2):1-29, 2000.
- G. P. Huet, Résolution d'Equations dans des Langages d'ordre 1,2,...,ω, Thèse d`État, Université de Paris VII, 1978
- **F. Baader and W. Snyder**. Unification theory. In Handbook of Automated Reasoning, volume 1, pages 445-534. Elsevier, 2001.