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Overview 

• Motivation: Translation Validation 

• Nonnested Recursion Schemes 

• Anchored Semi-Unification 

 



Motivation: Translation Validation 

• Check semantic equivalence of input and 
output of an optimization phase. 

𝑥 ≔ 𝑥 − 2 ∗ 𝑦 

return 𝑥 

𝑥 < 0 𝑥 ≥ 0 

𝑦 ≔ 2 ∗ 𝑦 

𝑥 ≔ 𝑥 − 𝑦 

return 𝑥 

𝑥 < 0 𝑥 ≥ 0 



Recursion Schemes 

• Encode the CFGs as recursion schemes 

𝑥 ≔ 𝑥 − 2 ∗ 𝑦 

return 𝑥 

𝑥 < 0 𝑥 ≥ 0 

𝑦 ≔ 2 ∗ 𝑦 

𝑥 ≔ 𝑥 − 𝑦 

return 𝑥 

𝑥 < 0 𝑥 ≥ 0 

𝑃1 𝑥, 𝑦 ≔ 
     if 𝑥 ≥ 0  
     then 𝑃1 𝑥 − 2 ∗ 𝑦, 𝑦   
     else 𝑃2 𝑥 − 2 ∗ 𝑦, 𝑦  
 
𝑃2 𝑥, 𝑦 ≔ return 𝑥 

𝑄1 𝑥, 𝑦 ≔ 𝑄2(𝑥, 2 ∗ 𝑦) 
 
𝑄2 𝑥, 𝑦 ≔ 
     if 𝑥 ≥ 0  
     then 𝑄2 𝑥 − 𝑦, 𝑦   
     else 𝑄3 𝑥 − 𝑦, 𝑦  
 
𝑄3 𝑥, 𝑦 ≔ return 𝑥 



Recursion Schemes 

• We can unfold the definitions of the 
procedures. 

𝑃1 𝑥, 𝑦 ≔ 
     if 𝑥 ≥ 0  
     then 𝑃1 𝑥 − 2 ∗ 𝑦, 𝑦   
     else 𝑃2 𝑥 − 2 ∗ 𝑦, 𝑦  
 
𝑃2 𝑥, 𝑦 ≔ return 𝑥 

𝑄1 𝑥, 𝑦 ≔ 𝑄2(𝑥, 2 ∗ 𝑦) 
 
𝑄2 𝑥, 𝑦 ≔ 
     if 𝑥 ≥ 0  
     then 𝑄2 𝑥 − 𝑦, 𝑦   
     else 𝑄3 𝑥 − 𝑦, 𝑦  
 
𝑄3 𝑥, 𝑦 ≔ return 𝑥 

𝑥 ≥ 0 

if 

return 𝑥 − 2 ∗ 𝑦 

𝑥 − 2 ∗ 𝑦 ≥ 0 

if 

return 𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦 

𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦 ≥ 0 if 
⋮ 

if 

return 𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦 − 2 ∗ 𝑦 

𝑃1 𝑥, 𝑦  
if 𝑥 ≥ 0 then 𝑃1 𝑥 − 2 ∗ 𝑦, 𝑦  else 𝑃2 𝑥 − 2 ∗ 𝑦, 𝑦  

if 𝑥 ≥ 0 then 𝑃1 𝑥 − 2 ∗ 𝑦, 𝑦  else return 𝑥 − 2 ∗ 𝑦 
if 𝑥 ≥ 0 then if 𝑥 − 2 ∗ 𝑦 ≥ 0 then 𝑃1 𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦, 𝑦  else return 𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦 else return 𝑥 − 2 ∗ 𝑦 



Recursion Schemes 

•  𝑄1 results in the same infinite tree. 

𝑃1 𝑥, 𝑦 ≔ 
     if 𝑥 ≥ 0  
     then 𝑃1 𝑥 − 2 ∗ 𝑦, 𝑦   
     else 𝑃2 𝑥 − 2 ∗ 𝑦, 𝑦  
 
𝑃2 𝑥, 𝑦 ≔ return 𝑥 

𝑄1 𝑥, 𝑦 ≔ 𝑄2(𝑥, 2 ∗ 𝑦) 
 
𝑄2 𝑥, 𝑦 ≔ 
     if 𝑥 ≥ 0  
     then 𝑄2 𝑥 − 𝑦, 𝑦   
     else 𝑄3 𝑥 − 𝑦, 𝑦  
 
𝑄3 𝑥, 𝑦 ≔ return 𝑥 

𝑥 ≥ 0 

if 

return 𝑥 − 2 ∗ 𝑦 

𝑥 − 2 ∗ 𝑦 ≥ 0 

if 

return 𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦 

𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦 ≥ 0 if 
⋮ 

if 

return 𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦 − 2 ∗ 𝑦 

if 𝑥 ≥ 0 then if 𝑥 − 2 ∗ 𝑦 ≥ 0 then 𝑃1 𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦, 𝑦  else return 𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦 else return 𝑥 − 2 ∗ 𝑦 

𝑄1(𝑥, 𝑦) 
𝑄2(𝑥, 2 ∗ 𝑦) 

if 𝑥 ≥ 0 then 𝑄2 𝑥 − 2 ∗ 𝑦, 2 ∗ 𝑦  else 𝑄3 𝑥 − 2 ∗ 𝑦, 2 ∗ 𝑦  
if 𝑥 ≥ 0 then 𝑄2 𝑥 − 2 ∗ 𝑦, 2 ∗ 𝑦  else return 𝑥 − 2 ∗ 𝑦 

if 𝑥 ≥ 0 then if 𝑥 − 2 ∗ 𝑦 ≥ 0 then 𝑄2 𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦, 2 ∗ 𝑦  else return 𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦 else return 𝑥 − 2 ∗ 𝑦 



Recursion Schemes 

•  𝑄1 results in the same infinite tree. 

• If the schemes produce the same tree, then 
the initial CFGs are equivalent. 

𝑃1 𝑥, 𝑦 ≔ 
     if 𝑥 ≥ 0  
     then 𝑃1 𝑥 − 2 ∗ 𝑦, 𝑦   
     else 𝑃2 𝑥 − 2 ∗ 𝑦, 𝑦  
 
𝑃2 𝑥, 𝑦 ≔ return 𝑥 

𝑄1 𝑥, 𝑦 ≔ 𝑄2(𝑥, 2 ∗ 𝑦) 
 
𝑄2 𝑥, 𝑦 ≔ 
     if 𝑥 ≥ 0  
     then 𝑄2 𝑥 − 𝑦, 𝑦   
     else 𝑄3 𝑥 − 𝑦, 𝑦  
 
𝑄3 𝑥, 𝑦 ≔ return 𝑥 

𝑥 ≥ 0 

if 

return 𝑥 − 2 ∗ 𝑦 

𝑥 − 2 ∗ 𝑦 ≥ 0 

if 

return 𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦 

𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦 ≥ 0 if 
⋮ 

if 

return 𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦 − 2 ∗ 𝑦 



Unification Modulo Nonnested 
Recursion Schemes 

• Restriction to nonnested schemes: 𝑃(𝑄 … ) 

• Unification: Find substitution of variables such 
that 𝑃 𝑠1, … , 𝑠𝑛 ≡ 𝑄 𝑡1, … , 𝑡𝑚  

• Tree equivalence problem was known to be 
decidable [Sabelfeld00,Courcelle78] 

• We reduce the unification problem to 
anchored semi-unification 



Semi-Unification 

• Semi-unification is undecidable 

• We reduce to a new decidable fragment:  
anchored semi-unification 

• We skip the reduction for this talk 



Ordinary Unification 

• Terms:      𝑠, 𝑡 ∷= 𝑥 | 𝑎 | 𝑠 ⋅ 𝑡 

• Substitutions 𝜎, 𝜏 substitute variables by 
terms 

• Given 𝑠 ≐ 𝑡, 
find a substitution 𝜎  
such that 𝜎𝑠 = 𝜎𝑡. 

• We call 𝜎 a unifier of 𝑠 ≐ 𝑡 

• Example  𝑥 ⋅ 𝑎 ≐ 𝑏 ⋅ 𝑦 
Unifier   𝜎 = 𝑥 ↦ 𝑏, 𝑦 ↦ 𝑎  



Semi-Unification 

• Terms:      𝑠, 𝑡 ∷= 𝑥  𝑎  𝑠 ⋅ 𝑡 ∣ 𝛼𝑥 

• An instance variable 𝛼𝑥 is a variant of 𝑥 

• This must be respected by substitutions: 

𝜎 𝛼𝑥 = 𝜎 𝛼 𝜎𝑥  

where 𝛼 𝑠 is 𝑠 with every variable 𝑦 being 
replaced by 𝛼𝑦 

• Example: 
𝜎 ≔ {𝑥 ↦ 𝑎 ⋅ 𝑦, 𝛼𝑥 ↦ 𝑎 ⋅ 𝑧, 𝛼𝑦 = 𝑧}  is ok 
𝜎 ≔ {𝑥 ↦ 𝑎 ⋅ 𝑦, 𝛼𝑥 ↦ 𝑦}  is forbidden 



Semi-Unification Example 

•  𝛼𝑥 ≐ 𝑎 ⋅ 𝑦,           𝛼𝑧 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑧 

We search for a solution 𝜎 



Semi-Unification Example 

•  𝛼𝑥 ≐ 𝑎 ⋅ 𝑦,           𝛼𝑧 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑧 

•     𝑧 ≐ 𝑎 ⋅ 𝑦,           𝛼𝑧 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑧 

𝛼𝑥 ⟹ 𝑧 since 𝜎 𝛼𝑥 = 𝜎𝑧 



Semi-Unification Example 

•  𝛼𝑥 ≐ 𝑎 ⋅ 𝑦,           𝛼𝑧 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑧 

•     𝑧 ≐ 𝑎 ⋅ 𝑦,           𝛼𝑧 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑧 

•     𝑧 ≐ 𝑎 ⋅ 𝑦, 𝛼 𝑎 ⋅ 𝑦 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦 

 
 

𝑧 ⟹ 𝑎 ⋅ 𝑦 since 𝜎𝑧 = 𝜎(𝑎 ⋅ 𝑦) 
𝛼𝑧 ⟹ 𝛼 (𝑎 ⋅ 𝑦) since 𝜎 𝛼𝑧 = 𝜎(𝛼 𝜎𝑧 ) 



Semi-Unification Example 

•  𝛼𝑥 ≐ 𝑎 ⋅ 𝑦,           𝛼𝑧 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑧 

•     𝑧 ≐ 𝑎 ⋅ 𝑦,           𝛼𝑧 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑧 

•     𝑧 ≐ 𝑎 ⋅ 𝑦, 𝛼 𝑎 ⋅ 𝑦 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦 

•     𝑧 ≐ 𝑎 ⋅ 𝑦,    𝑎 ⋅ 𝛼𝑦 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦 

By definition of  𝛼  



Semi-Unification Example 

•  𝛼𝑥 ≐ 𝑎 ⋅ 𝑦,           𝛼𝑧 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑧 

•     𝑧 ≐ 𝑎 ⋅ 𝑦,           𝛼𝑧 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑧 

•     𝑧 ≐ 𝑎 ⋅ 𝑦, 𝛼 𝑎 ⋅ 𝑦 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦 

•     𝑧 ≐ 𝑎 ⋅ 𝑦,    𝑎 ⋅ 𝛼𝑦 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦 

•     𝑧 ≐ 𝑎 ⋅ 𝑦,      𝑎 ≐ 𝑎, 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦 
 

Splitting the equation 



Semi-Unification Example 

•  𝛼𝑥 ≐ 𝑎 ⋅ 𝑦,           𝛼𝑧 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑧 

•     𝑧 ≐ 𝑎 ⋅ 𝑦,           𝛼𝑧 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑧 

•     𝑧 ≐ 𝑎 ⋅ 𝑦, 𝛼 𝑎 ⋅ 𝑦 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦 

•     𝑧 ≐ 𝑎 ⋅ 𝑦,    𝑎 ⋅ 𝛼𝑦 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦 

•     𝑧 ≐ 𝑎 ⋅ 𝑦,      𝑎 ≐ 𝑎, 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦 

•     𝑧 ≐ 𝑎 ⋅ 𝑦,                                           𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦 
 

Removing trivial equations 



Semi-Unification Example 

•  𝛼𝑥 ≐ 𝑎 ⋅ 𝑦,           𝛼𝑧 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑧 

•     𝑧 ≐ 𝑎 ⋅ 𝑦,           𝛼𝑧 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑧 

•     𝑧 ≐ 𝑎 ⋅ 𝑦, 𝛼 𝑎 ⋅ 𝑦 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦 

•     𝑧 ≐ 𝑎 ⋅ 𝑦,    𝑎 ⋅ 𝛼𝑦 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦 

•     𝑧 ≐ 𝑎 ⋅ 𝑦,      𝑎 ≐ 𝑎, 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦 

•     𝑧 ≐ 𝑎 ⋅ 𝑦,                                           𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦 

Now we can construct a solution 

𝜎 ≔ {𝑧 ↦ 𝑎 ⋅ 𝑦, 𝛼𝑦 ↦ 𝑎 ⋅ 𝑥, 𝛼𝑥 ↦ 𝑎 ⋅ 𝑦, 
𝛼𝑧 ↦ 𝑎 ⋅ 𝑎 ⋅ 𝑥 } 



Semi-Unification Rules 

• 𝐸, 𝛼𝑥 ≐ 𝑠 ⟹   𝐸 𝑠 ∕ 𝛼𝑥 , 𝛼𝑥 ≐ 𝑠 
if 𝑠 instance-free 

• 𝐸, 𝑥 ≐ 𝑠 ⟹   𝐸 𝑠/𝑥 , 𝑥 ≐ 𝑠  
if 𝑠 instance-free 

• 𝐸, 𝑠1 ⋅ 𝑠2 ≐ 𝑡1 ⋅ 𝑡2  ⟹   𝐸, 𝑠1 ≐ 𝑡1, 𝑠2 ≐ 𝑡2 

• 𝐸, 𝑠 ≐ 𝑠 ⟹   𝐸 

 

 



Semi-Unification Rules 

• But semi-unification is undecidable! 

• The rules always terminate but … 

• … they can get stuck. 

• Example: 
𝛼𝑥 ≐ 𝑎, 𝑥 ≐ 𝛼𝑦 

Substituting 𝑥 would produce 𝛼 𝛼𝑦 . 
We forbid this to ensure termination. 



Anchored Semi-Unification 

• Anchoredness: Invariant to ensure progress 

• Intuition: Whenever we see an instance 
variable, we can replace it by an instance-free 
term. 

• Definition: There is a partial equivalence 
relation ∼ on variables such that 
– If 𝛼𝑥 ∈ ∼ , then 𝛼𝑥 ≐ 𝑠 with 𝑠 instance-free 

– If 𝑠 𝑥 ≐ 𝑡[𝑦], then 𝑥 ∼ 𝑦 

– If 𝑠 𝛼𝑥 ≐ 𝑡[𝛽𝑦], then 𝛼𝑥 ∼ 𝛽𝑦 

– If 𝑥 ∼ 𝑦 and 𝛼𝑥 ∈ ∼ , then 𝛼𝑥 ∼ 𝛼𝑦 

 

 

 

• 𝐸, 𝛼𝑥 ≐ 𝒔 ⟹   𝐸 𝑠/𝛼𝑥 , 𝛼𝑥 ≐ 𝒔 
if 𝒔 instance-free 

• 𝐸, 𝑥 ≐ 𝒔 ⟹   𝐸 𝑠/𝑥 , 𝑥 ≐ 𝒔  
if 𝒔 instance-free 

• 𝐸, 𝑠1 ⋅ 𝑠2 ≐ 𝑡1 ⋅ 𝑡2  ⟹   𝐸, 𝑠1 ≐ 𝑡1, 𝑠2 ≐ 𝑡2 

• 𝐸, 𝑠 ≐ 𝑠 ⟹   𝐸 

 

 



Complexity 

• The rules I presented need exponential time 

• There is an algorithm with time 𝑂 𝑛3𝛼 𝑛  

• Idea from Unification-Closure [Huet78]:  
Don‘ t perform substitutions but just record 
equivalences in a union-find structure. 
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