
Anchored Semi-Unification

Tobias Tebbi

Final Talk – Master Thesis

Overview

• Motivation: Translation Validation

• Nonnested Recursion Schemes

• Anchored Semi-Unification

Motivation: Translation Validation

• Check semantic equivalence of input and
output of an optimization phase.

𝑥 ≔ 𝑥 − 2 ∗ 𝑦

return 𝑥

𝑥 < 0 𝑥 ≥ 0

𝑦 ≔ 2 ∗ 𝑦

𝑥 ≔ 𝑥 − 𝑦

return 𝑥

𝑥 < 0 𝑥 ≥ 0

Recursion Schemes

• Encode the CFGs as recursion schemes

𝑥 ≔ 𝑥 − 2 ∗ 𝑦

return 𝑥

𝑥 < 0 𝑥 ≥ 0

𝑦 ≔ 2 ∗ 𝑦

𝑥 ≔ 𝑥 − 𝑦

return 𝑥

𝑥 < 0 𝑥 ≥ 0

𝑃1 𝑥, 𝑦 ≔
 if 𝑥 ≥ 0
 then 𝑃1 𝑥 − 2 ∗ 𝑦, 𝑦
 else 𝑃2 𝑥 − 2 ∗ 𝑦, 𝑦

𝑃2 𝑥, 𝑦 ≔ return 𝑥

𝑄1 𝑥, 𝑦 ≔ 𝑄2(𝑥, 2 ∗ 𝑦)

𝑄2 𝑥, 𝑦 ≔
 if 𝑥 ≥ 0
 then 𝑄2 𝑥 − 𝑦, 𝑦
 else 𝑄3 𝑥 − 𝑦, 𝑦

𝑄3 𝑥, 𝑦 ≔ return 𝑥

Recursion Schemes

• We can unfold the definitions of the
procedures.

𝑃1 𝑥, 𝑦 ≔
 if 𝑥 ≥ 0
 then 𝑃1 𝑥 − 2 ∗ 𝑦, 𝑦
 else 𝑃2 𝑥 − 2 ∗ 𝑦, 𝑦

𝑃2 𝑥, 𝑦 ≔ return 𝑥

𝑄1 𝑥, 𝑦 ≔ 𝑄2(𝑥, 2 ∗ 𝑦)

𝑄2 𝑥, 𝑦 ≔
 if 𝑥 ≥ 0
 then 𝑄2 𝑥 − 𝑦, 𝑦
 else 𝑄3 𝑥 − 𝑦, 𝑦

𝑄3 𝑥, 𝑦 ≔ return 𝑥

𝑥 ≥ 0

if

return 𝑥 − 2 ∗ 𝑦

𝑥 − 2 ∗ 𝑦 ≥ 0

if

return 𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦

𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦 ≥ 0 if
⋮

if

return 𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦 − 2 ∗ 𝑦

𝑃1 𝑥, 𝑦
if 𝑥 ≥ 0 then 𝑃1 𝑥 − 2 ∗ 𝑦, 𝑦 else 𝑃2 𝑥 − 2 ∗ 𝑦, 𝑦

if 𝑥 ≥ 0 then 𝑃1 𝑥 − 2 ∗ 𝑦, 𝑦 else return 𝑥 − 2 ∗ 𝑦
if 𝑥 ≥ 0 then if 𝑥 − 2 ∗ 𝑦 ≥ 0 then 𝑃1 𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦, 𝑦 else return 𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦 else return 𝑥 − 2 ∗ 𝑦

Recursion Schemes

• 𝑄1 results in the same infinite tree.

𝑃1 𝑥, 𝑦 ≔
 if 𝑥 ≥ 0
 then 𝑃1 𝑥 − 2 ∗ 𝑦, 𝑦
 else 𝑃2 𝑥 − 2 ∗ 𝑦, 𝑦

𝑃2 𝑥, 𝑦 ≔ return 𝑥

𝑄1 𝑥, 𝑦 ≔ 𝑄2(𝑥, 2 ∗ 𝑦)

𝑄2 𝑥, 𝑦 ≔
 if 𝑥 ≥ 0
 then 𝑄2 𝑥 − 𝑦, 𝑦
 else 𝑄3 𝑥 − 𝑦, 𝑦

𝑄3 𝑥, 𝑦 ≔ return 𝑥

𝑥 ≥ 0

if

return 𝑥 − 2 ∗ 𝑦

𝑥 − 2 ∗ 𝑦 ≥ 0

if

return 𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦

𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦 ≥ 0 if
⋮

if

return 𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦 − 2 ∗ 𝑦

if 𝑥 ≥ 0 then if 𝑥 − 2 ∗ 𝑦 ≥ 0 then 𝑃1 𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦, 𝑦 else return 𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦 else return 𝑥 − 2 ∗ 𝑦

𝑄1(𝑥, 𝑦)
𝑄2(𝑥, 2 ∗ 𝑦)

if 𝑥 ≥ 0 then 𝑄2 𝑥 − 2 ∗ 𝑦, 2 ∗ 𝑦 else 𝑄3 𝑥 − 2 ∗ 𝑦, 2 ∗ 𝑦
if 𝑥 ≥ 0 then 𝑄2 𝑥 − 2 ∗ 𝑦, 2 ∗ 𝑦 else return 𝑥 − 2 ∗ 𝑦

if 𝑥 ≥ 0 then if 𝑥 − 2 ∗ 𝑦 ≥ 0 then 𝑄2 𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦, 2 ∗ 𝑦 else return 𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦 else return 𝑥 − 2 ∗ 𝑦

Recursion Schemes

• 𝑄1 results in the same infinite tree.

• If the schemes produce the same tree, then
the initial CFGs are equivalent.

𝑃1 𝑥, 𝑦 ≔
 if 𝑥 ≥ 0
 then 𝑃1 𝑥 − 2 ∗ 𝑦, 𝑦
 else 𝑃2 𝑥 − 2 ∗ 𝑦, 𝑦

𝑃2 𝑥, 𝑦 ≔ return 𝑥

𝑄1 𝑥, 𝑦 ≔ 𝑄2(𝑥, 2 ∗ 𝑦)

𝑄2 𝑥, 𝑦 ≔
 if 𝑥 ≥ 0
 then 𝑄2 𝑥 − 𝑦, 𝑦
 else 𝑄3 𝑥 − 𝑦, 𝑦

𝑄3 𝑥, 𝑦 ≔ return 𝑥

𝑥 ≥ 0

if

return 𝑥 − 2 ∗ 𝑦

𝑥 − 2 ∗ 𝑦 ≥ 0

if

return 𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦

𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦 ≥ 0 if
⋮

if

return 𝑥 − 2 ∗ 𝑦 − 2 ∗ 𝑦 − 2 ∗ 𝑦

Unification Modulo Nonnested
Recursion Schemes

• Restriction to nonnested schemes: 𝑃(𝑄 …)

• Unification: Find substitution of variables such
that 𝑃 𝑠1, … , 𝑠𝑛 ≡ 𝑄 𝑡1, … , 𝑡𝑚

• Tree equivalence problem was known to be
decidable [Sabelfeld00,Courcelle78]

• We reduce the unification problem to
anchored semi-unification

Semi-Unification

• Semi-unification is undecidable

• We reduce to a new decidable fragment:
anchored semi-unification

• We skip the reduction for this talk

Ordinary Unification

• Terms: 𝑠, 𝑡 ∷= 𝑥 | 𝑎 | 𝑠 ⋅ 𝑡

• Substitutions 𝜎, 𝜏 substitute variables by
terms

• Given 𝑠 ≐ 𝑡,
find a substitution 𝜎
such that 𝜎𝑠 = 𝜎𝑡.

• We call 𝜎 a unifier of 𝑠 ≐ 𝑡

• Example 𝑥 ⋅ 𝑎 ≐ 𝑏 ⋅ 𝑦
Unifier 𝜎 = 𝑥 ↦ 𝑏, 𝑦 ↦ 𝑎

Semi-Unification

• Terms: 𝑠, 𝑡 ∷= 𝑥 𝑎 𝑠 ⋅ 𝑡 ∣ 𝛼𝑥

• An instance variable 𝛼𝑥 is a variant of 𝑥

• This must be respected by substitutions:

𝜎 𝛼𝑥 = 𝜎 𝛼 𝜎𝑥

where 𝛼 𝑠 is 𝑠 with every variable 𝑦 being
replaced by 𝛼𝑦

• Example:
𝜎 ≔ {𝑥 ↦ 𝑎 ⋅ 𝑦, 𝛼𝑥 ↦ 𝑎 ⋅ 𝑧, 𝛼𝑦 = 𝑧} is ok
𝜎 ≔ {𝑥 ↦ 𝑎 ⋅ 𝑦, 𝛼𝑥 ↦ 𝑦} is forbidden

Semi-Unification Example

• 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦, 𝛼𝑧 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑧

We search for a solution 𝜎

Semi-Unification Example

• 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦, 𝛼𝑧 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑧

• 𝑧 ≐ 𝑎 ⋅ 𝑦, 𝛼𝑧 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑧

𝛼𝑥 ⟹ 𝑧 since 𝜎 𝛼𝑥 = 𝜎𝑧

Semi-Unification Example

• 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦, 𝛼𝑧 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑧

• 𝑧 ≐ 𝑎 ⋅ 𝑦, 𝛼𝑧 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑧

• 𝑧 ≐ 𝑎 ⋅ 𝑦, 𝛼 𝑎 ⋅ 𝑦 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦

𝑧 ⟹ 𝑎 ⋅ 𝑦 since 𝜎𝑧 = 𝜎(𝑎 ⋅ 𝑦)
𝛼𝑧 ⟹ 𝛼 (𝑎 ⋅ 𝑦) since 𝜎 𝛼𝑧 = 𝜎(𝛼 𝜎𝑧)

Semi-Unification Example

• 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦, 𝛼𝑧 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑧

• 𝑧 ≐ 𝑎 ⋅ 𝑦, 𝛼𝑧 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑧

• 𝑧 ≐ 𝑎 ⋅ 𝑦, 𝛼 𝑎 ⋅ 𝑦 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦

• 𝑧 ≐ 𝑎 ⋅ 𝑦, 𝑎 ⋅ 𝛼𝑦 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦

By definition of 𝛼

Semi-Unification Example

• 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦, 𝛼𝑧 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑧

• 𝑧 ≐ 𝑎 ⋅ 𝑦, 𝛼𝑧 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑧

• 𝑧 ≐ 𝑎 ⋅ 𝑦, 𝛼 𝑎 ⋅ 𝑦 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦

• 𝑧 ≐ 𝑎 ⋅ 𝑦, 𝑎 ⋅ 𝛼𝑦 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦

• 𝑧 ≐ 𝑎 ⋅ 𝑦, 𝑎 ≐ 𝑎, 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦

Splitting the equation

Semi-Unification Example

• 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦, 𝛼𝑧 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑧

• 𝑧 ≐ 𝑎 ⋅ 𝑦, 𝛼𝑧 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑧

• 𝑧 ≐ 𝑎 ⋅ 𝑦, 𝛼 𝑎 ⋅ 𝑦 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦

• 𝑧 ≐ 𝑎 ⋅ 𝑦, 𝑎 ⋅ 𝛼𝑦 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦

• 𝑧 ≐ 𝑎 ⋅ 𝑦, 𝑎 ≐ 𝑎, 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦

• 𝑧 ≐ 𝑎 ⋅ 𝑦, 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦

Removing trivial equations

Semi-Unification Example

• 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦, 𝛼𝑧 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑧

• 𝑧 ≐ 𝑎 ⋅ 𝑦, 𝛼𝑧 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑧

• 𝑧 ≐ 𝑎 ⋅ 𝑦, 𝛼 𝑎 ⋅ 𝑦 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦

• 𝑧 ≐ 𝑎 ⋅ 𝑦, 𝑎 ⋅ 𝛼𝑦 ≐ 𝑎 ⋅ 𝑎 ⋅ 𝑥 , 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦

• 𝑧 ≐ 𝑎 ⋅ 𝑦, 𝑎 ≐ 𝑎, 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦

• 𝑧 ≐ 𝑎 ⋅ 𝑦, 𝛼𝑦 ≐ 𝑎 ⋅ 𝑥, 𝛼𝑥 ≐ 𝑎 ⋅ 𝑦

Now we can construct a solution

𝜎 ≔ {𝑧 ↦ 𝑎 ⋅ 𝑦, 𝛼𝑦 ↦ 𝑎 ⋅ 𝑥, 𝛼𝑥 ↦ 𝑎 ⋅ 𝑦,
𝛼𝑧 ↦ 𝑎 ⋅ 𝑎 ⋅ 𝑥 }

Semi-Unification Rules

• 𝐸, 𝛼𝑥 ≐ 𝑠 ⟹ 𝐸 𝑠 ∕ 𝛼𝑥 , 𝛼𝑥 ≐ 𝑠
if 𝑠 instance-free

• 𝐸, 𝑥 ≐ 𝑠 ⟹ 𝐸 𝑠/𝑥 , 𝑥 ≐ 𝑠
if 𝑠 instance-free

• 𝐸, 𝑠1 ⋅ 𝑠2 ≐ 𝑡1 ⋅ 𝑡2 ⟹ 𝐸, 𝑠1 ≐ 𝑡1, 𝑠2 ≐ 𝑡2

• 𝐸, 𝑠 ≐ 𝑠 ⟹ 𝐸

Semi-Unification Rules

• But semi-unification is undecidable!

• The rules always terminate but …

• … they can get stuck.

• Example:
𝛼𝑥 ≐ 𝑎, 𝑥 ≐ 𝛼𝑦

Substituting 𝑥 would produce 𝛼 𝛼𝑦 .
We forbid this to ensure termination.

Anchored Semi-Unification

• Anchoredness: Invariant to ensure progress

• Intuition: Whenever we see an instance
variable, we can replace it by an instance-free
term.

• Definition: There is a partial equivalence
relation ∼ on variables such that
– If 𝛼𝑥 ∈ ∼ , then 𝛼𝑥 ≐ 𝑠 with 𝑠 instance-free

– If 𝑠 𝑥 ≐ 𝑡[𝑦], then 𝑥 ∼ 𝑦

– If 𝑠 𝛼𝑥 ≐ 𝑡[𝛽𝑦], then 𝛼𝑥 ∼ 𝛽𝑦

– If 𝑥 ∼ 𝑦 and 𝛼𝑥 ∈ ∼ , then 𝛼𝑥 ∼ 𝛼𝑦

• 𝐸, 𝛼𝑥 ≐ 𝒔 ⟹ 𝐸 𝑠/𝛼𝑥 , 𝛼𝑥 ≐ 𝒔
if 𝒔 instance-free

• 𝐸, 𝑥 ≐ 𝒔 ⟹ 𝐸 𝑠/𝑥 , 𝑥 ≐ 𝒔
if 𝒔 instance-free

• 𝐸, 𝑠1 ⋅ 𝑠2 ≐ 𝑡1 ⋅ 𝑡2 ⟹ 𝐸, 𝑠1 ≐ 𝑡1, 𝑠2 ≐ 𝑡2

• 𝐸, 𝑠 ≐ 𝑠 ⟹ 𝐸

Complexity

• The rules I presented need exponential time

• There is an algorithm with time 𝑂 𝑛3𝛼 𝑛

• Idea from Unification-Closure [Huet78]:
Don‘ t perform substitutions but just record
equivalences in a union-find structure.

References

• B. Courcelle. A representation of trees by languages II.
Theoretical Computer Science, 7(1):25-55, 1978.

• V. Sabelfeld. The tree equivalence of linear recursion
schemes. Theoretical Computer Science, 238(1-2):1-29,
2000.

• G. P. Huet, Résolution d'Equations dans des Langages
d'ordre 1,2,...,𝜔, Thèse d`État, Université de Paris VII,
1978

• F. Baader and W. Snyder. Unification theory. In
Handbook of Automated Reasoning, volume 1, pages
445-534. Elsevier, 2001.

